Kamis, 22 Desember 2011

Pembangkit Listrik Tenaga Sampah

Proyek pengkonversian sampah menjadi listrik akan menggabungkan tiga cara dalam mengelola sampah. Sampah lama dikelola dengan teknologi landfill, yakni, dengan mengumpulkan seluruh sampah lama dan menutup permukaannya dengan tanah. Lalu, lewat pipa yang dipasang di dalamnya, gas methan ditangkap dan digunakan untuk mengeringkan sampah. Dalam beberapa tahun, sampah akan terdegradasi dan volume tumpukan akan mengempis. Cairan yang keluar dari sampah selama proses itu konon dijamin tak akan menjadi limbah karena ditampung dan dikelola dalam instalasi khusus water treatment.
Untuk sampah baru, prosesnya akan dipilah dulu. Sampah basah (macam kayu, daun, kertas) dicacah lalu dimasukkan dalam digester (pengering) yang nantinya menghasilkan biogas dan kompos. Teknologi ini dinamakan Anaerobic Digestion. Sedangkan sampah baru kering (seperti plastik) akan diolah dengan teknologi pirolisis dan gasification, yakni dengan pemanasan tinggi tanpa oksigen yang menghasilkan gas dan digunakan untuk menggerakkan turbin. Teknologi itu , tidak berisiko tinggi terhadap kesehatan masyarakat. "Teknologi ini bukan Incinerator (pembakaran sampah). Dengan mengolah 500 ton sampah per hari, instalasi ini sanggup mengalirkan listrik 5-8 Megawatt. PT NOEI berjanji membagi keuntungan penjualan listrik hasil olahan sampah pada PLN Bali dengan nilai US$1.000 per Megawatt harinya kota Shanghai. Sampah tersebut diolah menjadi energi listrik. Dengan volume sampah tadi maka setiap hari dapat dihasilkan daya listrik sebesar 35.000-40.000 kwh. Didirikan mulai Desember 1998 dengan nilai investasi 670 juta Yuan, Pudong City Heat Energy merupakan perusahaan join venture antara Cina dengan negara lain, antara lain Italia.
Shigehiro adalah general business manager Eco Valley Utashinai, sebuah perusahaan yang mengubah sampah menjadi energi dengan menggunakan teknologi plasma arc, sebuah “sentakan” listrik yang mengionisasi gas dalam sebuah bilik (chamber) dan menghasilkan temperatur lebih dari 16.000°C, setara dengan 3 kali panasnya permukaan matahari. Sebuah teknologi seharga USD 59 juta, yang untuk menutupi investasi yang besar itu diperlukan timbunan sampah yang melimpah. Indonesia, terutama pada istilah-istilah yang berhubungan dengan teknologi plasma arc ini.
Menurut artikel itu, secara teori pembuangan sampah akan menjadi bisnis yang menguntungkan dan ramah lingkungan dengan mengubah sampah yang digaskan (gassified waste) menjadi energi. Di atas kertas, sampah padat perkotaan (SPP) mengandung sepertiga hingga setengah energi batubara pertonnya dan mampu untuk memasok energi dalam skala nasional. Pembangkit plasma Utashinai adalah satu-satunya fasilitas pendaur ulang SPP menjadi energi yang sudah beroperasi dan mampu untuk bertahan hidup sejak tahun 2002.
Plasma arc sendiri sebenarnya adalah sebuah teknologi lama, meskipun pemanfaatannya untuk pengolahan sampah dalam skala besar masih termasuk baru. Teknologi ini telah dikembangkan dan digunakan oleh NASA sejak tahun 60-an untuk mensimulasikan temperatur tinggi yang dialami pesawat ruang angkasa ketika memasuki atmosfer bumi. Semenjak perusahaan-perusahaan seperti Startech dan Westinghouse Plasma di Madison mengembangkan plasma arc pada tahun 90-an yang digunakan oleh Geoplasma untuk mengolah sampah, “obor” plasma (plasma torches) ini banyak digunakan untuk melumerkan sisa logam atau menghancurkan material yang berbahaya.
Obor ini dibuat dengan mengionisasi udara dalam bilik dengan sebuah powerful electric arc (apa ya padanannya dalam bahasa Indonesia?) untuk membangkitkan plasma, yang selanjutnya digunakan untuk memanaskan SPP, arang (coke), dan batu kapur (limestone) dalam sebuah bilik yang miskin atau hampa(?) oksigen (oxygen-starved chamber). Dalam kondisi ini, obor plasma akan memanasi campuran tersebut hingga suhu di atas 1500°C untuk mem-vitrifikasi (vitrify: change into glass or a glass-like substance by applying heat) material anorganik dalam SPP tanpa terjadi pembakaran (combution). Ampas/sisa yang tidak berbahaya yang dihasilkan dari proses ini dapat digunakan sebagai bahan konstruksi, meskipun harganya tidak cukup komersial alias tidak terlalu menguntungkan.
Yang lebih penting lagi, panas yang ada mampu menguraikan molekul organik dalam SPP. Jika dalam pembakaran yang biasa akan dihasilkan banyak gas karbon dioksida, maka dalam sebuah lingkungan dimana jumlah oksigennya terbatas, SPP akan diubah menjadi sebuah campuran dengan kandungan gas utama karbon monoksida dan hidrogen yang disebut syngas. Nah syngas inilah yang bisa dimanfaatkan untuk menggerakan turbin gas. Hidrogen yang dimurnikan bisa langsung digunakan sebagai bahan bakar, sedangkan campuran gas yang dihasilkan dari sampah ini terlebih dahulu harus diolah lagi untuk mengurangi kandungan polutan seperti nitrogen oksida dan dioksin, yang akan masuk ke dalam turbin atau lepas ke atmosfer.
Jepang sudah cukup sukses dengan teknologi ini. Pembangkit Utashinai sudah mampu menghasilkan 3000 megawatt energi per tahun, yang semuanya digunakan untuk menjalankan pembangkit tersebut. Nah sekarang mereka sedang bingung mencari sampah, karena suplai sampah di kota itu semakin berkurang. Namun demikian, selama ini ternyata baru 60% sampah (dari yang diharapkan oleh perusahaan) yang bisa diolah, selain itu energi listrik yang dihasilkan masih terbatas untuk digunakan oleh pembangkit itu saja, belum ada yang dijual. Fasilitas yang ada juga mengalami masalah operasional, dimana satu dari 2 fasilitas plasma arc yang ada sering tak beroperasi untuk perbaikan. Dan kalau kedua fasilitas yang ada itu berjalan semua, eh sampahnya yang tidak cukup.
Mengimpor sampah, itulah salah satu alternatif yang ada agar pembangkit Utashinai bisa tetap beroperasi optimal. Sayangnya penduduk di sana masih tidak bersedia jika daerah tempat tinggalnya dijadikan tempat penimbunan atau pengolahan sampah dari daerah lain. “Tidak ada orang yang punya persepsi yang baik tentang sampah!” begitu kira-kira kata Shigehiro.
Pada pembangkit Utashinai, energi yang mampu diubah menjadi listrik hanya 15% saja, karena turbin gas yang digunakan dalam pembangkit ini lebih murah harganya jika dibandingkan dengan apa yang tengah dirancang oleh Geoplasma. Geoplasma rencananya akan menggunakan turbin gas seharga USD 40 juta dengan efisiensi 40%.
Meskipun teknologi ini memiliki potensi yang menakjubkan untuk mengurangi tumpukan sampah yang menggunung, namun penggerak lingkungan masih saja mewaspadai akan potensi polutan yang ada dalam syngas. Dalam laporan tahun 2006 tentang strategi konversi termal SPP, Greenaction for Health and Environmental Justice yang berbasis di Kalifornia menyebut teknologi plasma arc dan gasifikasi dengan pemanasan tinggi lainnya sebagai incenerator yang tersamar.
Secara umum pengelolaan sampah di perkotaan dilakukan melalui 3 tahapan kegiatan, yakni: pengumpulan, pengangkutan dan pembuangan akhir/pengolahan. Tahapan kegiatan tersebut merupakan suatu sistem, sehingga masing-masing tahapan dapat disebut sebagai sub sistem.

Pada tahap pembuangan akhir/pengolahan, sampah akan mengalami pemrosesan baik secara fisik, kimia maupun biologis sedemikian hingga tuntas penyelesaian seluruh proses. Ada dua proses pembuangan akhir, yakni: open dumping (penimbunan secara terbuka) dan sanitary lanfill (pembuangan secara sehat). Pada sistem open dumping, sampah ditimbun di areal tertentu tanpa membutuhkan tanah penutup; sedangkan pada cara sanitary landfill, sampah ditimbun secara berselang-seling antara lapisan sampah dan lapisan tanah sebagai penutup.

Sampah yang telah ditimbun pada tempat pembuangan akhir (TPA) dapat mengalami proses lanjutan. Teknologi yang digunakan dalam proses lanjutan yang umum digunakan adalah :
1. Teknologi pembakaran (incinerator). Dengan cara ini dihasilkan produk samping berupa logam bekas (scrap) dan uap yang dapat dikonversikan menjadi energi listrik. Keuntungan lainnya dari penggunaan alat ini adalah:
a) Dapat mengurangi volume sampah  75% - 80% dari sumber sampah tanpa proses pemilahan,
b) Abu atau terak dari sisa pembakaran cukup kering dan bebas dari pembusukan dan bisa langsung dapat dibawa ke tempat penimbunan pada lahan kosong, rawa ataupun daerah rendah sebagai bahan pengurug, dan
c) Pada instalasi yang cukup besar dengan kapasitas 300 ton/hari dapat dilengkapi dengan pembangkit listrik Sehingga energi listrik (96.000 MWH/tahun) yang dihasilkan dapat dimanfaatkan untuk menekan biaya proses (Dinas Kebersihan DKI Jakarta).
2. Teknologi komposting yang menghasilkan kompos untuk digunakan sebagai pupuk maupun penguat struktur tanah.
3. Teknologi daur ulang yang dapat menghasilkan sampah potensial, seperti: kertas, plastik logam dan kaca/gelas.

Ternyata dalam sistem penanganan sampah sistem tersebut diatas timbul beberapa permasalahan, yakni :
1. Dari segi pengumpulan sampah dirasa kurang efisien karena mulai dari sumber sampah sampai ke tempat pembuangan akhir, sampah belum dipilah-pilah sehingga walaupun akan dterapkan eknologi lanjutan berupa komposting maupun daur ulang perlu tenaga untuk pemilahan menurut jenisnya sesuai dengan yang dibutuhkan, dan hal ini akan memerlukan dana maupun menyita waktu.
2. Pembuangan akhir ke TPA dapat menimbulkan masalah, diantaranya :
a. Perlu lahan yang besar bagi tempat pembuangan akhir (TPA) sehingga hanya cocok bagi kota yang masih mempunyai banyak lahan yang tidak terpakai. Apalagi bila kota menjadi semakin bertambah jumlah penduduknya, maka sampah akan menjadi semakin bertambah baik jumlah dan jenisnya. Hal ini akan semakin bertambah juga luasan lahan bagi TPA. Apabila instalasi Incinerator yang ada tidak dapat mengimbangi jumlah sampah yang masuk jumlah timbunannya semakin lama semakin meningkat. Lalu dikhawatirkan akan timbul berbagai masalah sosial dan lingkungan, diantaranya :
- Dapat menjadi lahan yang subur bagi pembiakan jenis-jenis bakteri serta bibit penyakit lain;
- Dapat menimbulkan bau tidak sedap yang dapat tercium dari puluhan bahkan ratusan meter; dan
- Dapat mengurangi nilai estetika dan keindahan lingkungan.
b. Biaya operasional sangat tinggi bagi pengumpulan, pengangkutan dan pengolahan lebih lanjut. Apalagi bila letak TPA jauh dan bukan di wilayah otonomi.
c. Pembuangan sistem open dumping dapat menimbulkan beberapa dampak negatip terhadap lingkungan. Pada penimbunan dengan sistem anarobik landfill akan timbul leachate di dalam lapisan timbunan dan akan merembes ke dalam lapisan tanah di bawahnya. Leachate ini sangat merusak dan dapat menimbulkan bau tidak enak, selain itu dapat menjadi tempat pembiakan bibit penyakit seperti: lalat, tikus dan lainnya (Sidik, et al, 1985).
d. Pembuangan dengan cara sanitary landfill, walaupun dapat mencegah timbulnya bau, penyakit dan lainnya, tetapi masih memungkinkan muncul masalah lain yakni :
-. Timbulnya gas yang dapat menyebabkan pencemaran udara. Gas-gas yang mungkin dihasilkan adalah : methan, H2S, NH3 dan lainnya. Gas H2S dan NH3 walaupun jumlahnya sedikit, namun dapat menyebabkan bau yang tidak enak sehingga dapat merusak sistem pernafasan tanaman dan membuat tanaman kekurangan gas oksigen dan akhirnya mati.
-. Pada proses penimbunan, sebaiknya sampah diolah terlebih dahulu dengan cara dihancurkan dengan tujuan untuk memperkecil volume sampah agar memudahkan pemampatan sampah. Untuk melakukan ini tentunya perlu tambahan pekerjaan yang berujung pada tambahan dana.
3. Penggunaan incinerator dalam pengolahan sampah memiliki beberapa kelemahan, di antaranya :
- Dihasilkan abu ( 15%) dan gas yang memerlukan penanganan lebih lanjut. Selain itu gas yang dihasilkan dari pembakaran dengan menggunakan alat ini dapat mengandung gas pencemar berupa: Ox., SOx dan lain-lain yang dapat mengganggu kesehatan manusia;
- Dapat menimbulkan air kotor saat proses pendinginan gas maupun proses pembersihan Incinerator dari abu maupun terak. Kualitas air kotor dari instalasi ini menyebabkan COD meningkat dan pH menurun;
- Memerlukan biaya yang besar dalam menjalankan Incinerator. Untuk menangani sampah  800 ton/hari memerlukan investasi Rp. 60 milyar, sedangkan dari hasil penjualan listrik yang dihasilkanhanya Rp. 2,24 milyar/tahun;
- Butuh keahlian tertentu dalam penggunan alat ini. Sebagai contoh pada penanganan sampah di Surabaya, tehnologi ini sudah digunakan sejak tahun 1990, namun tanpa didukung dengan kualitas sumber daya manusia yang memahami filosofi alat ini, akibatnya pada tahun kedua terjadi kerusakan. Hal ini tentu menambah beban dalam perolehan dana bagi perbaikannya. Belum lagi sampah yang akan menumpuk dengan tidak berfungsinya alat ini.
- Penggunaan Incinerator ini tidak dapat berdiri sendiri dalam pemusnahan sampah, tetapi masih memerlukan landfill guna membuang sisa pembakaran;
4. Belum maksimalnya usaha pemasaran bagi kompos yang dihasilkan dari proses pengomposan sampah kota;
5. Belum maksimalnya upaya sistem daur ulang menjadi barang-barang yang bernilai ekonomi tinggi;
6. Sulitnya mendapatkan tambahan biaya bagi peningkatan kesejahteraan petugas yang terlibat dalam penanganan sampah. Hal ini tentu akan berakibat pada kegairarahan kerja yang rendah dari para pengelola sampah.

Sehingga dalam kenyataannya teknologi incinerator ini mulai ditinggalkan. Ada teknologi dengan pemanfaatan biogas untuk pembangkit listrik. Di Jakarta sedang di ujicoba di daerah Cakung.

Teknologi terbaru datang juga dari Jepang, dengan nama teknologi plasma arc. Teknologi ini mengubah sampah menjadi energi dengan menggunakan teknologi plasma arc, sebuah “sentakan” listrik yang mengionisasi gas dalam sebuah bilik (chamber) dan menghasilkan temperatur lebih dari 16.000°C, setara dengan 3 kali panasnya permukaan matahari. Sebuah teknologi seharga USD 59 juta, yang untuk menutupi investasi yang besar itu diperlukan timbunan sampah yang melimpah.

Secara teori dalam masa depan, pembuangan sampah akan menjadi bisnis yang menguntungkan dan ramah lingkungan dengan mengubah sampah yang digaskan (gassified waste) menjadi energi. Di atas kertas, sampah padat perkotaan (SPP) mengandung sepertiga hingga setengah energi batubara pertonnya dan mampu untuk memasok energi dalam skala nasional. Pembangkit plasma Utashinai adalah satu-satunya fasilitas pendaur ulang SPP menjadi energi yang sudah beroperasi dan mampu untuk bertahan hidup sejak tahun 2002.

Beberapa perusahaan, yang berharap mampu meningkatkan kinerja yang sudah dihasilkan Jepang, saat ini juga tengah merancang fasilitas plasma arc mereka. Geoplasma, sebuah perusahaan yang berbasis di Atlanta bahkan sedang dalam tahap akhir perancangan sebuah pembangkit dengan ukuran yang 10 kali lebih besar daripada Utashinai yang akan dibangun di St Lucie, Florida. Jika rancangan ini selesai, maka pada tahun 2009 pembangkit ini akan mampu mengubah 2.700 ton sampah per hari menjadi energi listrik. Sementara itu Startech Environmental di Wilton, Connecticut mengumumkan kontraknya untuk membangun fasilitas serupa dengan kapasitas 180 ton per hari di Panama. Perusahaan lainnya yang saat ini masih dalam tahap negosiasi untuk pembangunan fasilitas serupa di Ottawa dan Barcelona adalah Plasco Energy Group di Ontario.

Plasma arc sendiri sebenarnya adalah sebuah teknologi lama, meskipun pemanfaatannya untuk pengolahan sampah dalam skala besar masih termasuk baru. Teknologi ini telah dikembangkan dan digunakan oleh NASA sejak tahun 60-an untuk mensimulasikan temperatur tinggi yang dialami pesawat ruang angkasa ketika memasuki atmosfer bumi. Semenjak perusahaan-perusahaan seperti Startech dan Westinghouse Plasma di Madison mengembangkan plasma arc pada tahun 90-an yang digunakan oleh Geoplasma untuk mengolah sampah, “obor” plasma (plasma torches) ini banyak digunakan untuk melumerkan sisa logam atau menghancurkan material yang berbahaya.

Obor ini dibuat dengan mengionisasi udara dalam bilik dengan sebuah powerful electric arc untuk membangkitkan plasma, yang selanjutnya digunakan untuk memanaskan SPP, arang (coke), dan batu kapur (limestone) dalam sebuah bilik hampa oksigen (oxygen-starved chamber). Dalam kondisi ini, obor plasma akan memanasi campuran tersebut hingga suhu di atas 1500°C untuk mem-vitrifikasi (vitrify: change into glass or a glass-like substance by applying heat) material anorganik dalam SPP tanpa terjadi pembakaran (combution). Ampas/sisa yang tidak berbahaya yang dihasilkan dari proses ini dapat digunakan sebagai bahan konstruksi, meskipun harganya tidak cukup komersial alias tidak terlalu menguntungkan.

Yang lebih penting lagi, panas yang ada mampu menguraikan molekul organik dalam SPP. Jika dalam pembakaran yang biasa akan dihasilkan banyak gas karbon dioksida, maka dalam sebuah lingkungan dimana jumlah oksigennya terbatas, SPP akan diubah menjadi sebuah campuran dengan kandungan gas utama karbon monoksida dan hidrogen yang disebut syngas. Nah syngas inilah yang bisa dimanfaatkan untuk menggerakan turbin gas. Hidrogen yang dimurnikan bisa langsung digunakan sebagai bahan bakar, sedangkan campuran gas yang dihasilkan dari sampah ini terlebih dahulu harus diolah lagi untuk mengurangi kandungan polutan seperti nitrogen oksida dan dioksin, yang akan masuk ke dalam turbin atau lepas ke atmosfer.

Jepang sudah cukup sukses dengan teknologi ini. Pembangkit Utashinai sudah mampu menghasilkan 3000 megawatt energi per tahun, yang semuanya digunakan untuk menjalankan pembangkit tersebut. Nah sekarang mereka sedang bingung mencari sampah, karena suplai sampah di kota itu semakin berkurang. Namun demikian, selama ini ternyata baru 60% sampah (dari yang diharapkan oleh perusahaan) yang bisa diolah, selain itu energi listrik yang dihasilkan masih terbatas untuk digunakan oleh pembangkit itu saja, belum ada yang dijual. Fasilitas yang ada juga mengalami masalah operasional, dimana satu dari 2 fasilitas plasma arc yang ada sering tak beroperasi untuk perbaikan. Dan kalau kedua fasilitas yang ada itu berjalan semua, ternyata sampahnya yang tidak cukup. Mengimpor sampah, itulah salah satu alternatif yang ada agar pembangkit Utashinai bisa tetap beroperasi optimal. Sayangnya penduduk di sana masih tidak bersedia jika daerah tempat tinggalnya dijadikan tempat penimbunan atau pengolahan sampah dari daerah lain.

Pada pembangkit Utashinai, energi yang mampu diubah menjadi listrik hanya 15% saja, karena turbin gas yang digunakan dalam pembangkit ini lebih murah harganya jika dibandingkan dengan apa yang tengah dirancang oleh Geoplasma. Geoplasma rencananya akan menggunakan turbin gas seharga USD 40 juta dengan efisiensi 40%.

Meskipun teknologi ini memiliki potensi yang menakjubkan untuk mengurangi tumpukan sampah yang menggunung, namun penggerak lingkungan masih saja mewaspadai akan potensi polutan yang ada dalam syngas. Dalam laporan tahun 2006 tentang strategi konversi termal SPP, Greenaction for Health and Environmental Justice yang berbasis di California menyebut teknologi plasma arc dan gasifikasi dengan pemanasan tinggi lainnya sebagai incenerator yang tersamar

Tidak ada komentar:

Posting Komentar